

* UNCLASSIFIED

SECURITY CLASSIFICATION OF TbIS PAGE (When Does Ewf~vere_________________
REPOT DCUMNTATON AGEREAD INSTRUCTIONS

REPOT DCUMNTATON AGEBEFORE COMPLETING FORM
REOR N UMBE 2. GOVT ACCESSINON NO, 3- RECIPIENT'S CATALOG NUMBER

4. TITLE (and &Mbiftl) S. TYPE OF REPORT & PERIOD COVERED
Quarterly Technical

Development of a voice Funnel System 1 May - 31 July 1982
Quarerl Tehnial Rpor No 166. PERFORMING ORG. REPORT NUMBER
Quarerl Tehnial Rpor No 165203

7. AUTNOR(q) S. CONTRACT OR GRANT NUMUERfs)

NtJ. Goodhue, Jr. 14DA903-78-C-0356

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Bolt Beranek and Newman Inc. AREA A WORK UNIT NUMBER%

10 Moulton Street
Cambridge, 'MA 02238

It. CON4TROLLING OFFICE NANE AND ADDRESS 12. REPORT DATE

DARPA O':tober 1982
1400 Wilson Boulevard IS. NUMBER OF PAGES

Arlington, VA 22209 28
14. MONITORING AGENCY NAME 6 AODRESS(it dlitomot aii Confrolgn aflae.) IS. SECURITY CLASS. (of this repor)

UJNCLASS IFIED

5. ECL ASSI PIC ATION/ DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (*I this Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (.1 the abstt e ntaered ain Block 20. It diffrent 100rn Rope")

IS. SUPPLEMENTARY NOTES

19. KIEV WORDS (Continue an, iree old tit necessry o 0mstiy by block mmbff)

Voice Funnel, Digitized Speech, Packet Switching, Butterfly Switch,
Multiprocessor.

20. ASTRACT (Contia. an reverse elde it necessary and id..It#f by WeekS ORmMJ

- -This Quarterly Technical Report covers work performed during the
period noted on the development of a high-speed interface, called
a Voice Funnel, between digitizied speech streams and a packet-
switching communications network.",,%

DD I FjN7 1473 EDITION OF I NOV 48SIS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE rWho. Dae Ented)

Report No. 5203 Bolt Beranek and Newman Inc.

DEVELOPMENT OF A VOICE FUNNEL SYSTEM

QUARTERLY TECHNICAL REPORT NO. 16
1 May 1982 to 31 July 1982

October 1982

This research was sponsored by the
Defense Advanced Research Projects
Agency under ARPA Order No.: 3653
Contract No.: MDA903-78-C-0356
Monitored by DARPA/IPTO
Effective date of contract: 1 September 1978
Contract expiraticn date: 31 December 1982
Principal investigator: R. D. Rettberg

Prepared for:

Dr. Robert E. Kahn, Director
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard
Arlington, VA 22209

The views and conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either express or implied, of
the Defense Advanced Research Projects Agency or the United
States Government.

Report No. 5203 Bolt Beranek and Newman Inc.

Table of Contents

1. Introduction .. 1
W 2. Buffer Management................................... 5

3. Buffer Management Utility Routines 16

I

I

Report No. 5203 Bolt Beranek and Newman Inc.

qFIGURES

Buffer Header...
Buffer Identifier 11

- ii -

Report No. 5203 Bolt Beranek and Newman Inc.

TABLES

Buffer Fieldsn..n.ed)................................. 9

B u f r F edrc n i u d

Report No. 5203 Bolt Beranek and Newman Inc.

1. Introduction

This Quarterly Technical Report, Number 16, describes

aspects of our work performed under Contract No. MDA903-78-C-0356U

during the period from 1 May 1982 to 31 July 1982. This is the

sixteenth in a series of Quarterly Technical Reports on the

design of a packet speech concentrator, the Voice Funnel.

This report describes the set of utilities that we have

developed for creating and manipulating buffer space in the Voice

Funnel. In the remainder of this sectior, we give the motivation

for the development of special-purpose facilities for Buffer

Management. In Section 2, we give a general description of the

j Buffer Management System. In Section 3, we give detailed

descriptions of the macros and system calls that are available to

users.

In a communications processor such as the Voice Funnel, the

mechanisms which manage buffer space are extremely important.

Performance measurement experiments with the ARPANET IMP, the

Pluribus Satellite IMP, and other communications processors

developed at BBN have shown that the efficiency of buffer

management operations has a significant impact on overall

performance. As a result, we have devoted considerable attention

in the development of a highly efficient set of buffer management

primitives. Since the buffer management system is heavily used

by the synchronous I/O software in the Voice Funnel, its features

Report No. 5203 Bolt Beranek and Newman Inc.

have also been designed to match the structure of the Butterfly

Synchronous I/O system.

A natural alternative would have been to use the Chrysalis

Object Management System as the mechanism for buffer management,

since our original intent was to use the Object Management System

as a general-purpose space allocator, and we would not have

needed to invest the effort in developing and documenting a

second mechanism. There are two aspects of the current Object

Management System that kept us from taking this course. First,

the operation of mapping in an Object is relatively time

consuming, as it involves checking the access privileges of the

process, checking the validity of the Object Handle, and locating

and setting up a Segment Attribute Register. This amount of

overhead seems excessive for a Buffer Management System where the

mapping in of buffers is a very frequent operation.

The second difficulty with using the Object Management

System for Buffer Management stems from the fact that the Object

Management System uses the memory management hardware to enforce

protectior between memory objects, limiting the number of legal

object sizes. In particular, the smallest unit of size is 256

bytes. For many purposes, the advantages of hardware protection

easily outweigh any space inefficiency due to breakage. However,

in applications such as the Voice Funnel, performance is

dependent to some extent on the availability of a relatively

large number of buffers whose sizes do not necessarily match

-2-

Report No. 5203 Bolt Beranek and Newman Inc.

rhardware protection boundaries. As a result, the amount of

memory space lost to due breakage could be significant in some

cases if we were to use the Object Management System directly for

m Buffer Management.

We have taken two steps to deal with these problems. For

the short term, we have developed a Buffer Management System that

performs two functions: it uses the Object Management System to

acquire a fixed allocation of memory space, and it supplies a set

of primitive operations for manipulating buffers that are

suballocated from this space. This lets user processes map in an

entire buffer pool once, and use a faster (but less

isophisticated) set of primitives for accessing and manipulating

the buffers in that pool. It also minimizes the amount of space

lost due to breakage. Unfortunately, this approach gives up many

of the protection features and debugging aids offered by the

Object Management System.

For the longer term, we will attempt to remedy the problems

that led us to develop a special-purpose mechanism in the first

place. The major thrust of this effort will be to increase the

speed of the Object mapping and unmapping operations, probably

through additional microcode support. The breakage problem

cannot be remedied so easily, as the lower bound on the

granularity of the protection sizes (256 bytes) is built into the

hardware. On the other hand, memory is becoming a less expensive

and more plentiful resource, since the new version of the

-3 -

Report No. 5203 Bolt Beranek and Newman Inc.

Butterfly Processor Node holds 256 kilobytes, expandable to four

megabytes. Under these circumstances, the memory loss due to

breakage may not be significant compared to the effort required

to maintain a special-purpose mechanism.

4!

b

Report No. 5203 Bolt Beranek and Newman Inc.

2. Buffer Management

Consistent with the philosophy that all significant woik on

the Butterfly should be done by processes accessing local memory,

the orientation of this buffer management scheme is not system-

wide, but instead is directed towards individual Processor Nodes.

A buffer pool is created in three steps. First, a block of

memory is acquired from the Object Management System in the form

of a Buffer Pool Object. This block is then broken into

individual buffers. Finally, an identifier (buffer ID) is

created for each buffer, and all of the buffer IDs are placed on

a Dual Queue (hereafter referred to as the Free Queue). To

simplify Buffer Pool deletion, ownership of the Buffer Pool

Object is transferred from the creating process to the Free

Queue. Any process that knows the Object Handle of the Free

Queue can acquire a buffer by executing the appropriate dequeue,

poll, or wait operation. There is no restriction on what object

the Free Queue belongs to, or where the Free Queue is located.

A buffer pool relies on three kinds of data structure: the

Free Queue, the Buffer Pool Object, and the buffer. The Free

Queue is a Dual Queue as defined by the Chrysalis operating

system, and is not described here. The Buffer Pool Object

consists of an Object Attribute Block (OAB), which resides in

Segment F8, and a memory area which resides in user memory. The

0 type code in the OAB is the same as that of a general-purpose

user object, since the treatment of these two kinds of object by

-5-

Report No. 5203 Bolt Beranek and Newman Inc.

the Object Management system is for the most part identical. To

differentiate a Buffer Pool Object from a general-purpose user

object, a flag is set in the flags field of the QAB. The subtype

field of the QAB is set to the value of the unique identifier

associated with the Buffer Pool Object.

The memory area has two components. A beginning section

contains the Object Handle of the Free Queue, the number and size

of buffers in the pool, and space for a Dual Queue Lock. The

remainder of the memory area contains the buffers themselves. As

with all Chrysalis objects that incorporate user memory, the size

of the buffer pool must match a hardware protection boundary size

and the entire pool cannot be larger than 64 kilobytes. There is

no hardware-enforced protection between buffers. If some process

decides to make an access outside of a buffer that it has just

acquired, it will not be prevented from doing so by the memory

management hardware, unless the access is outside the Buffer Pool

Object. This loss of protection is traded for smaller napping

overhead and the ability to define buffers of arbitrary size

without fragmentation problems.

Buffers are not objects. They are simply contiguous blocks

of memory that are suballocated from Buffer Pool Objects. A

buffer consists of a header and a data area. The C structure

definition of a buffer header is shown in Figure 1. A

description of each of the header fields is given in Table 1.

Some of these fields are used in association with Channel Control

-6-

Report No. 5203 Bolt Beranek and Newman Inc.

Blocks (CCBs). CCBs are used by the synchronous I/O system, and

are described in QTR 10.

struct buffer

BUFID buf.nxtpkt;
BUFID bufrnext;
short unsigned bufflags;
long unsigned buf-id;
OID buf-poolid;
QH buf.freeQ;
QH bufrlock;
short unsigned buf.nbytes;
short unsigned buf-maxsize;
short buf-usecnt;
long buf-time;
short unsigned buf.offset;1;

Figure 1 . Buffer Header

-7-

Report No. 5203 Bolt Beranek and Newman Inc.

bufnxtpkt: This field is used to construct and follow linked
lists of packets.

bufrnext: This field is used to construct and follow linked
lists of buffers.

bufrflags: This field is reserved for status flags. When
the buffer is taken from the synchronous
receiver, the high order byte of the ccb_status
field of the Channel Control Block is copiea into
the high order byte of this field by the I/O
driver process. No other flags are defined.

bufid: This field gives the identifier of the buffer.
It is set on initialization and should not be
changed after that.

buf-poolid: This field gives the Object Handle of the buffer
pool that the buffer belongs to. It is set on
initialization and should not be changed after
that.

buf-freeQ: This is the Handle of the Free Queue onto which
the buffer ID should be placed when the buffer is
freed. The value of this field is set on
initialization and should not be changed after
that.

buflock: This field holds the handle of a Dual Queue Lock
that is used to regulate access to a buffer when
more than one process is manipulating its
contents.

buf-nbytes: This field gives the number of bytes of valid
data currently in the buffer. When the buffer is
taken from the synchronous receiver, the
ccbnbytes field of the Channel Control Block is
copied into this field by the I/O driver process.
When a buffer is filled from scratch or modified
by an application process, this field must be
updated by that process.

Table 1. Buffer Fields

-8-

[Report No. 5203 Bolt Beranek and Newman Inc.

bufmaxsize: This field gives the total number of bytes
allocated to the buffer. It is made available for

m consistency checking. The value of this field is
set on initialization and should not be changed
after that.

bufusecnt: This is a use count field, available to
applications where there are multiple pointers
into a single buffer. Its function is described
below in greater detail.

buftime: Much like the timestamp field of the Channel
Control Blocks used in the synchronous I/O
system, this field serves a dual purpose. When a
buffer is taken from the synchronous receiver,
the ccb-time field of the associated Channel
Control Block is copied into this field by the
I/O driver process. When a buffer is being
prepared for output, this field holds the time at
which the buffer should be transmitted. In both
cases, the time specified in this field is
relative to the Processor Node real time clock.

buf-offset: This field gives the offset from the beginning of
the buffer header at which the first byte of
useful data resides. Its purpose is to
facilitate the insertion and deletion of header
fields in packet buffers. This is necessary when
the Butterfly must move packets between two
dissimilar networks, as in the Voice Funnel
application. When the buffer is to be processed
by the synchronous receiver, the "ccb-phys" field
of the Channel Control Block is set by the I/O
driver process to be consistent with this field.
On output, the "ccb-phys" field is set to be
consistent with this field when the CCB
parameters are set. This field is set to "sizeof
(struct buffer)" on initialization.

Table 2. Buffer Fields (continued)

-9-

Report No. 5203 Bolt Beranek and Newman Inc.

q Some care has been taken to ensure that operations on

buffers are as efficient as possible without circumventing the

protection mechanisms of the hardware and the operating system.

The most important operations are gaining access to the data in a

buffer and moving buffers on and off of Free Queues and other

Dual Queues. Through the use of microcode-supported Dual Queue

primitives, the implementation of "C" language routines that

acquire and free buffers in a few tens of microseconds is not

difficult.

The problem of gaining access to a buffer by using its

assigned identifier is not quite as straightforward. Ideally,

one would like a buffer identifier to be a logical pointer to the

buffer. However, this is not practical in an environment like

the Butterfly, where each process has its own segmented address

space. An alternative is to use the physical address of a buffer

as its identifier and allow processes to construct virtual

pointers as needed. However, the construction of a virtual

pointer from a physical address is only slightly less time

consuming than mapping in an object; in addition, the use of

physical addresses would mean giving up all the benefits of the

memory protection system.

The solution adopted here is to have each process select the

buffer pools it is interested in, map them in once, and maintain

a table that allows buffer identifiers to be converted to virtual

addresses in a small number of instructions. To accomplish this,

-10-

Report No. 5203 Bolt Beranek and Newman Inc.

Ievery buffer pool is assigned a unique (system-wide) identifier

when it is created. When a process maps in a buffer pool, it

stores the resulting logical pointer in a table at an offset

m equal t the value of the buffer pool identifier. The structure

of a buffer ID is shown in Figure 2. It is the concatenation of

a buffer pool identifier and the sixteen-bit offset from the

buffer pool pointer at which the buffer resides. To gain access

to a buffer, a process uses the buffer pool identifier to

retrieve a pointer from a table of buffer pool pointers, then

adds it to the offset field of the buffer (each process maintains

its own table). It would be possible to eliminate the addition

by creating a unique identifier for every buffer in the system,

[but the cost in time of the extra store and add is outweighed by

the cost in space of maintaining a large table in the address

space of every process in the system. With the scheme used here.

uthe execution time of the sequence of operation needed to map in

a buffer is approximately 20 microseconds on an 8 MHz MC68000.

The actual time depends on whether the Buffer Identifier and

table pointer are in registers or main memory.

(8) (8) (16)
------------- --------------------------

1 Pool ID I unused 1 offset '

Figure 2 . Buffer Identifier

- 11 -

Report No. 5203 Bolt Beranek and Newman Inc.

For this scheme to operate correctly, there must be a source

of unique buffer pool identifiers. For this purpose. a Dual

Queue is kept in a global memory segment that is shared among

various operating system routines. On system initialization, the

queue is filled with all legal buffer pool identifiers. When a

Buffer Pool Object is created, the initialization routine

dequeues the next available identifier from this queue. When a

Buffer Pool Object is deleted, its identifier is placed back on

the queue for reuse. A compile-time operating system constant

sets the maximum number of identifiers.

Buffer pools that span more than one Processor Node can be

creased by assigning a single Free Queue to more than one buffer

pool. This mechanism has the same generality as a mechanism that

would allow a single buffer pool to span more than one node, but

avoids the problems of managing a data structure across more than

one node. Processes using such a pool must be careful to map in

all cf the associated Buffer Pool Objects. Packets that span

more than one buffer are chained into linked lists using the

"bufnext" field of the buffer header. By convention, the

identifier of the first buffer in a multi-buffer chain serves to

identify the entire chain. Chains of buffers may be linked

together using the "bufnxtpkt" field of the the first buffer of

each chain.

A Buffer Pool is deleted by passing the Object Handle of the

Free Queue to the Object deletion routine provided in the

- 12 -

Report No. 5203 Bolt Beranek and Newman Inc.

0 Chrysalis Protected Library. This routine deletes the Buffer

Pool in three steps: first, it invalidates the Object Handle of

the Free Queue, denying further access to the Buffer Pool. Then,

Sm if there are Event Handles on the queue, they are all posted with

null pointers as data. This wakes up any process that may be

waiting on the Free Queue, and informs it that the buffer pool no

longer exists. Finally, the Object Management System deletes all

of the Buffer Pool Objects that belong to the Free Queue, and

frees their identifiers for reuse. If any buffers are still in

use, the processes that hold them will have the Buffer Pool

Object mapped in, preventing the Object Management System from

reusing the Buffer Pool Object and causing conflicts. Once all

processes have unmapped the object, it will be returned to free

storage by the Object Management System.

It is sometimes useful to give multiple processes access to
U

a single buffer. For instance, a process that is running a

reliable protocol may want to retain a pointer to an outgoing

buffer which it can queue for retransmission if no acknowledgment

is received. For this purpose, the Buffer Management System

supports a mechanism similar to the "use count" mechanism that

was developed for the Pluribus. When a process first acquires a

free buffer, it sets the use count field in the header of that

buffer to one, indicating that only one process currently has

access to it.

- 13 -

Report No. 5203 Bolt Beranek and Newman Inc.

When the acquiring process is finished with the buffer, it

has three choices. In the simplest case, the buffer is freed.

After observing that the use count is one, the system-supplied

subroutine for freeing buffers decrements the use count and

places the Buffer ID on its Free Queue. Alternatively, the

acquiring process may want to relinquish control over the buffer

q and pass its identifier on to another process. In this case, the

use count is left untouched because the number of processes with

access to the buffer remains constant. Finally, the acquiring

process may want to pass the buffer on to another process but

retain its own pointer to the buffer as well. In this case, the

acquiring process increments the use count of the buffer before

passing its identifier on. When the system-supplied subroutine

for freeing buffers encounters a buffer whose use count is

greater than one, it decrements the use count but does not put

the buffer identifier on the Free Queue.

When more than one process has access to a given buffer, a

locking mechanism is necessary to ensure consistency. In

particular, it is necessary to lock a buffer before incrementing

or decrementing a use count that is greater than one. To meet

this need, every buffer pool object incorporates a Dual Queue

lock, and the system subroutine for freeing buffers always waits

on this lock before attempting to decrement a use count that is

greater than one (note that the lock need not be used when the

use count is equal to one). Since a Dual Queue lock consumes

- 14 -

Report No. 5203 Bolt Beranek and Newman Inc.

memory space of its own, this mechanism uses one lock per buffer

pool, rather than one lock per buffer. As a result, there will

be competition for the lock between unrelated processes under

-some circumstances. Since the lock is not a spin lock and it

should never be held for more than a few instruction times, the

time lost due to unwarranted waits on the lock should be

outweighed by the amount of space that would be consumed if a

separate lock were to be implemented for every buffer. The

number of processes allowed to wait on the lock at any one time

b is set by an operating system constant.

By convention, the use count of the first buffer in a linked

list of buffers is taken as the use count of the entire chain.

This reduces the overhead associated with manipulating linked

lists of buffers.

It is up to the processes that drive the synchronous I/O

channels to take care of the special case where buffers are to be

passed to or from the synchronous I/O hardware. When the ID of a

buffer that belongs on a synchronous receiver queue is placed on

its Free Queue, the Synchronous I/O Driver must dequeue the

buffer ID, associate a CCB with the buffer, and splice the CCB

onto the appropriate synchronous receiver queue. Similarly, when

a buffer is freed by the Synchronous Transmitter it must be

picked up by the Synchronous I/O Driver and its ID must be placed

on the appropriate Free Queue.

-15-

Report No. 5203 Bolt Beranek and Newman Inc.

3. Buffer Management Utility Routines

This section gives detailed specifications for the utility

routines that have been developed to support the Buffer

Management facilities in the Voice Funnel. For convenience,

"struct buffer" is defined to be equivalent to "BUFFER". In

order to minimize execution time, several of the facilities that

manipulate buffers directly are implemented as C macros. The

names and functions of the buffer management utilities are as

follows:

Operations on Buffer pools:

MakeBFpool - Create a buffer pool
BFmap-pool - Map in a buffer pool
BFunmap-pool - Unmap a buffer pool

Operations on buffers:

BFmap-buf - Map in buffer
BFfreebuf - Free a buffer
BFfreechain - Free a chain of buffers
BFLOCK - Lock a buffer
BFUNLOCK - Unlock a buffer
BFincuse - Indivisibly increment a use count
BFmodoffset - Modify the "bufoffset" field

Data Transfer:

BFcopy - Copy data from one buffer to another

I,

~- 16 -

Report No. 5203 Bolt Beranek and Newman Inc.

1! Title: MakeBFpool

Function: Create a Buffer Pool Object

Arguments:

U 1. short number of buffers in the pool
2. QH Object Handle of Free Queue
3. short size of each buffer
4. int Processor Node on which to create object (-1 => local)
5. bits Desired protection code, (0 => use default)

Return Value: OID -- Object Handle of the buffer pool

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

This routine first creates a Buffer Pool Object on the
specified Processor Node and acquires an identifier for it.
It then initializes the buffers in the Object, places the
identifier of each buffer on the Free Queue, and transfers

1ownership of the Object to the Free Queue. If -1 is
supplied as the Processor Node number, the buffer pool
object will be created on the same node as the creating
process. The buffer pool identifier is stored in the
subtype field of the Object Attribute Block, and the Buffer
Pool Object flag (80 hex) in the flags field of the Object
Attribute Block is set in order to differentiate this object
from an ordinary object with memory.

Bugs: no known bugs

Example:

short nbuf;
QH freeQ;
short bufsize;
short node;
bits prot;
OID pool;

pool = MakeBFpool (nbuf, freeQ, bufsize, node, prot);

9 - 17-

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFmap-pool

Function: map in a buffer pool

Arguments:

1. OID Buffer Pool Object Handle

Return Value: pointer to the buffer pool

Possible Exceptions:

CONSISTENCY already mapped in

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:

This routine is for processes that wish to gain access tobuffers in a given Buffer Pool Object. It first uses theObject Management System to map in the specified Buffer PoolObject. Then a pointer to the buffer pool is entered into atable of buffer pool pointers at an offset corresponding tothe value of the Buffer Pool identifier. The table isautomatically declared in the header file "buffer.h".

Bugs: no known bugs

Example:

OID bufpool;

BFmap-pool (bufpool);

- 18 -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFunmappool

Function: unmap a buffer pool

Arguments:

1. OID Buffer Pool Object Handle

Return Value: none

Possible Exceptions:

CONSISTENCY Not mapped in

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:

This routine is for processes that no longer need access to
the buffers in a given Buffer Pool Object. It uses the
Object Management System to unmap the specified Buffer Pool
Object, and removes the pointer to the buffer pool object
from the global table of buffer pool pointers associated
with the process.

Bugs: no known bugs

Example:

UOID bufpool

BFunmap-pool (bufpool);

-19-

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFmap-buf

Function: map in a buffer

Arguments:

1. BUFID Buffer Identifier

Return Value: Buffer Pointer

Possible Exceptions: none

Files: /usr/butterfly/lib/csrc/buffer.h

Description:

This macro converts a Buffer Identifier into the logical
address of a buffer. To construct the pointer, it uses the
global table of Buffer Pool pointers associated with the
process to find a pointer to the appropriate buffer pool. It
then adds in the offset specified in the low half of the
buffer identifier, and returns the result. In the interest
of speed, no error checking is done.

Bugs: no known bugs

Example:

BUFFER *bufp;
BUFID bufid;

bufp BFmap-buf (bufid);

-20-

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFfreebuf

Function: free a buffer

Arguments:

P m 1 I. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

This routine first tests the use count field of the
specified buffer. If the count equals one, it decrements
the count and enqueues the identifier of the buffer to the
Free Queue whose handle is stored in the buffer header.
Otherwise, it waits on the lock whose handle is stored in
the buffer header, decrements the use count, and rechecks
the count. If the count is greater than or equal to one,
the routine returns. Otherwise, some other p-ocess has
decremented the use count while this one was wait. .g on the
lock. In that case, the buffer identifier is placed on its
Free Queue.

Bugs: no known bugs

Example:

BUFFER *bufp;

BFfreebuf (bufp);

- 21 -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFfree-chain

Function: free a chain of buffers

Arguments:

1. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

qFiles: /usr/butterfly/chrys/prot/buffer.c68

Description:

This routine uses an algorithm similar to that of BFfree-buf
to free all of the buffers in the the chain of buffers
headed by the specified buffer. In order to reduce
processing overhead, the buffer management system uses the
convention that the first buffer in the chain holds status
information pertinent to the entire chain. Thus, it is the
use count in the first buffer of a chain that determines how
many processes currently hold the chain. The use count in
all but the first buffer in a chain should always be one.

Bugs: no known bugs

Example:

BUFFER *bufp;

BFfreechain (bufp);

2
S- 22 -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFLOCK

Function: lock a buffer

Arguments:

- 1. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/lib/csrc/buffer.c68

Description:

This macro locks a buffer by dequeueing from a Dual Queue
lock associated with its pool. The possible time overheaddue to lock contention is traded for the space reduction
gained by having per pool, rather than per buffer, locks. Abuffer must be locked when: (1) a process wants to
increment its use count to a value greater than one; (2) the
buffer is being freed and its use count is greater than one.

[Bugs: no known bugs

Example:

BUFFER *bufp;
U

BFLOCK (bufp);

- 23 -

• 'C.

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFUNLOCK

Function: unlock a buffer

Arguments:

1. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:

This is the companion macro to "BFLOCK". It unlocks a
buffer by enqueuing the handle of the calling process to a
Dual Queue lock associated with a buffer pool.

Bugs: no known bugs

Example:

BUFFER *bufp;

BF_UNLOCK (bufp);

I

~- 24 -

iw - , • .

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFincuse

Function: Indivisibly increment a use count

Arguments:

S 1. BUFFER* pointer to a buffer

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:

This macro locks the specified buffer and increments its use
count. It is only needed when a process wishes to increment
a non-zero use count. Note the absence of a similar macro
for decrementing a use count. That is because a process
should never decrement a use count unless it intends to free
the associated buffer.

Bugs: no known bugs[
Example:

BUFFER *bufp;

BFincuse (bufp);

-25-

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFmodoffset

Function: modify the buf-offset field of a buffer

Arguments:

1. BUFFER* pointer to the buffer
2. short increment

Return Value: none

Possible Exceptions: none

Files: /usr/butterfly/chrys/prot/buffer.h

Description:

This macro adds the specified increment to the "bufoffset"
field of a buffer and subtracts it from the "buf.nbytes"
field. This is intended merely as a convenient shorthand
for a common pair of operations.

Bugs: no known bugs

Example:

BUFFER *bufp;
short increment;

BFmodoffset (bufp, increment);

- 26 -

Report No. 5203 Bolt Beranek and Newman Inc.

Title: BFcopy

Function: Block transfer data of one buffer to another

Arguments:

p 1. BUFFER* pointer to the source buffer
2. BUFFER* pointer to the destination buffer

Return Value: none

Possible Exceptions:

CONSISTENCY destination buffer too small

Files: /usr/butterfly/chrys/prot/buffer.c68

Description:

This routine block transfers data in the source buffer to
the destination buffer. Data is copied into the destination
buffer starting at the offset specified in the "buf-offset"
field of the destination buffer. No copying will take place
if sufficient destination buffer space is not available. On[completion of the transfer, the "bufnbytes" field of the
source buffer is copied into the corresponding field of the
destination buffer. Data is copied using the block transfer
operation provided by the Processor Node Controller, even if
the two buffers are on the same node.

Bugs: no known bugs

Example:

BUFFER *srcp;
BUFFER *destp
unsigned short nbytes;

BFcopy (srcp, destp, nbytes);

-27-

Report No. 5203 Bolt Beranek and Newman Inc.

DISTRIBUTION OF THIS REPORT

Defeng Advane d R L PrQ Aency
Dr. Robert E. Kahn (2)
Dr. Vinton Cerf (1)

Deflense Suppl Service -- kakhingLton

Jane D. Hensley (1)

Defens Documentation Center (12)
q llsc/is

Danny Cohen
Steve Casner

HI/Lincoln Labs
Dr. Clifford J. Weinstein (3)

SaI International
Earl Craighill (1)

Rome Air De at Center
Neil Marples - RBES (1)
Julian Gitlin - DCLD (1)

Bont ran An NewmanJ=.
Library
Library, Canoga Park Office (2)
S. Blumenthal
R. Bressler
R. Brooks
P. Carvey
P. Castleman
W. Edmond
G. Falk
J. Goodhue
S. Groff
E. Harriman
F. Heart
M. Hoffman
M. Kraley
A. Lake
W. Mann
W. Milliken
M. Nodine
R. Rettberg
P. Santos
G. Simpson
E. Starr
E. Wolf

-28-

